baskara

             Báskara

Bhaskara foi um matemático, professor, astrólogo e astrônomo indiano nascido em Vijayapura (1114-1185), Índia, o mais importante matemático do século XII e último matemático medieval importante da Índia. Filho de um astrólogo famoso chamado Mahesvara, tornou-se conhecido pela complementação da obra do conterrâneo Brahmagupta, por exemplo dando pioneiramente a solução geral da conhecida equação de Pell* e a solução do problema da divisão por zero, ao afirmar também pioneiramente, em sua publicação Vija-Ganita ou Bijaganita, um trabalho em 12 capítulos, que tal quociente seria infinito. Tornou-se chefe do observatório astronômico a Ujjain, cidade onde ficou até morrer e o principal centro matemático da Índia na sua época, fama desenvolvida por excelentes matemáticos como Varahamihira e Brahmagupta que ali tinham trabalhado e construído uma escola forte de astronomia matemática. Sua obra representou a culminação de contribuições hindus anteriores. Seis trabalhos seus são conhecidos e um sétimo trabalho reivindicado para ele é por muitos historiadores para ser uma falsificação posterior.

Os seis comprovados são Lilavati, Bijaganita, Siddhantasiromani, Vasanabhasya of Mitaksara, Karanakutuhala ou Brahmatulya e Vivarana Em Siddhantasiromani, dois volumes sobre trigonometria e matemática aplicada à astronomia, apresentou as expressões sen(a + b) = sen a cos b + cos a sen b e sen(a – b) = sen a cos b – cos a sen b.

Ø Siddhantasiromani, dedicado a assuntos astronômicos é dividido em duas partes:

· Goladhyaya ( Esfera Celeste );

· Granaganita ( Matemática dos Planetas );

Ø Bijaganita que é um livro sobre Álgebra [ os indianos foram os pais da Álgebra e a chamavam de Outra (= Bija ) Matemática ( = Ganita), pois nasceu depois da matemática tradicional que dedicava-se aos cálculos aritméticos e geométricos ].
Bhaskara gasta a maior parte desse livro mostrando como resolver equações . Embora não traga nenhuma novidade quanto à resolução das equações determinadas, ele traz muitos novos e importantes resultados sobre as indeterminadas. Para os matemáticos, é exatamente nas suas descobertas em equações indeterminadas que reside sua importância histórica.


Seu tratado mais conhecido é Lilavati (1150), nome de uma sua filha, um livro com numerosos problemas sobre equações lineares e quadráticas, tanto determinadas como indeterminadas, mensurações lineares e de áreas e volumes, progressões aritméticas e geométricas, radicais, tríades pitagóricas e outros. Por exemplo, mostrou a solução para as equações indeterminadas considerando o problema da divisão por zero e a demonstração de forma simplificada do teorema de Pitágoras, além de apresentar tabelas de senos com intervalos de um grau. Definiu valores para p da seguinte forma: 3927/1250 para cálculos acurados, 22/7 para aproximações e raiz quadrada de 10 para exercícios corriqueiros.

Conta a história que “quando Lilavati nasceu, Bhaskara consultou as estrelas e verificou, pela disposição dos astros, que sua filha, condenada a permanecer solteira toda a vida, ficaria esquecida pelo amor dos jovens patrícios. Não se conformou Bhaskara com essa determinação do Destino e recorreu aos ensinamentos dos astrólogos mais famosos do tempo. Como fazer para que a graciosa Lilavati pudesse obter marido, sendo feliz no casamento? Um astrólogo, consultado por Bhaskara, aconselhou-a a casar Lilavati com o primeiro pretendente que aparecesse, mas demonstrou que a única hora propícia para a cerimônia do enlace seria marcada, em certo dia, pelo cilindro do Tempo.

Os hindus mediam, calculavam e determinavam as horas do dia com o auxílio de um cilindro colocado num vaso cheio d’água. Esse cilindro, aberto apenas em cima, apresentava um pequeno orifício no centro da superfície da base. À proporção que a água, entrando pelo orifício da base, invadia lentamente o cilindro, este afundava no vaso e de tal modo que chegava a desaparecer por completo em hora previamente determinada.

Lilavati foi, afinal, com agradável surpresa, pedida em casamento por um jovem rico e de boa casta. Fixado o dia e marcada a hora, reuniram-se os amigos para assistir à cerimonia.

Bhaskara colocou o cilindro das horas e aguardou que a água chegasse ao nível marcado. A noiva, levada por irreprimível curiosidade, verdadeiramente feminina, quis observar a subida da água no cilindro. Aproximou-se para acompanhar a determinação do Tempo. Uma das pérolas de seu vestido desprendeu-se e caiu no interior do vaso. Por uma fatalidade, a pérola levada pela água foi obstruir o pequeno orifício do cilindro, impedindo que nele pudesse entrar a água do vaso. O noivo e os convidados esperaram com paciência largo período de tempo. Passou-se a hora propícia sem que o cilindro indicasse o tempo como previra o sábio astrólogo. O noivo e os convidados retiraram-se para que fosse fixado, depois de consultados os astros, outro dia para o casamento. O jovem brâmane, que pedira Lilavati em casamento, desapareceu semanas depois e a filha de Bhaskara ficou para sempre solteira.

Reconheceu o sábio geômetra que é inútil contra o Destino e disse à sua filha:

— Escreverei um livro que perpetuará o teu nome e ficarás na lembrança dos homens mais do que viveriam os filhos que viessem a nascer do teu malogrado casamento.”

O livro Lilavati, na verdade, é a quarta parte do livro Siddhanta Siroman. Enquanto Lilavati (A Bela) trata de aritmética, as outras três partes são Bijaganita (Contagem de sementes), álgebra, Grahaganita, sobre Matemática planetária e Goladhyaya, sobre o globo celeste.

O Lilavati é escrito em 278 versos e trata de vários assuntos: tabelas, o sistema de numeração, as oito operações, frações, zero, regra de três, regra de três composta, mistura, porcentagens, progressões, geometria, medidas, pilhas, problemas geométricos de sombras, modificação da Kuttaka (a equação ax+c=by), da varga prakrit (a equação nx^2 + 1 = y^2, com n inteiro positivo, também conhecida como equação de Pell) e permutações. (apud Siddhanta Siroman, acedido em 00/11/15)

A palavra Lilavati é um nome próprio de mulher ( a tradução é Graciosa ), e a razão de ter dado esse título a seu livro é porque, provavelmente, teria desejado fazer um trocadilho comparando a elegância de uma mulher da nobreza com a elegância dos métodos da Aritmética.

Equações INDETERMINADAS ou diofantinas:

Chamamos assim às equações ( polinomiais e de coeficientes inteiros ) com infinitas soluções inteiras, como é o caso de:

v y – x = 1 que aceita todos os x = a e y = a + 1 como soluções , qualquer que seja o valor de a

v a famosa equação de Pell x2 = N y2 + 1

Bhaskara foi o primeiro a ter sucesso na resolução dessa equação, para isso introduzindo o método do chakravala ( ou pulverizador ).

Bhaskara nem sabia o que é uma fórmula, já que estas surgiram 400 anos após a sua morte.

Naquela época, como eram resolvidas as equações ?
Usando REGRAS !

Chamamos de regra à uma descrição por extenso dos procedimentos para resolver um problema, por exemplo uma equação. Na época de Bhaskara essas regras, tipicamente, tinham a forma de poesias que iam descrevendo as operações a realizar para resolver o problema.
A partir de Aryabhata 500 d.C., e possivelmente muito antes, os indianos já usavam várias regras para resolver equações do segundo grau. Entre essas, destacamos a seguinte que tem uma formulação muito próxima do procedimento que hoje usamos:

EXEMPLO:
Para resolver as equações quadráticas da forma ax2 + bx = c, os indianos usavam a seguinte regra:

“multiplique ambos os membros da equação pelo número que vale quatro vezes o coeficiente do quadrado e some a eles um número igual ao quadrado do coeficiente original da incógnita. A solução desejada é a raiz quadrada disso”

É também muito importante observar que a falta de uma notação algébrica, bem como o uso de métodos geométricos para deduzir as regras, faziam os matemáticos da Era das Regras terem de usar varias regras para resolver equações do segundo grau. Por exemplo, precisavam de regras diferentes para resolver :

x2 = px + q e x2 + px = q.

Foi só na Era das Fórmulas, inaugurada com a Logística Speciosa de François Viète c. 1 600 d.C., que iniciaram as tentativas de dar um procedimento único para resolver todas as equações de um grau dado.

Logo, embora não se deva negar a importância e a riqueza da obra de Bhaskara, não é correto atribuir a ele a conhecida formula de resolução da equação do 2ºgrau.

Um problema de aritmética do livro Lilavati

“A quinta parte de um enxame de abelhas pousou numa flor de Kadamba, a terça parte numa flor de Silinda, o triplo da diferença entre estes dois números, voa sobre uma flor de Krutaja. E uma abelha sozinha, no ar, atraída pelo perfume de um jasmim e de um pandnus.

Diz-me, bela menina, qual é o número das abelhas?”

Anúncios

matematica

                     Matemática

Ir para: navegação, pesquisa

Portal A Wikipédia possui o
Portal de matemática

{{{Portal2}}}

{{{Portal3}}}

{{{Portal4}}}

{{{Portal5}}}

A Matemática (do grego máthēma (μάθημα): ciência, conhecimento, aprendizagem; mathēmatikós (μαθηματικός): apreciador do conhecimento) é o estudo de padrões de quantidade, estrutura, mudanças e espaço.

Um astrónomo chinês.

Um astrónomo chinês.

Na visão moderna, é a investigação de estruturas abstratas definidas axiomaticamente, usando a lógica formal como estrutura comum. As estruturas específicas geralmente têm sua origem nas ciências naturais, mais comumente na Física, mas os matemáticos também definem e investigam estruturas por razões puramente internas à matemática, por exemplo, ao perceberem que as estruturas fornecem uma generalização unificante de vários subcampos ou uma ferramenta útil em cálculos comuns. Muitos matemáticos estudam as áreas que escolheram por razões estéticas – simplesmente porque eles acham que as estruturas investigadas são belas em si mesmas. Historicamente, as principais disciplinas dentro da matemática surgiram da necessidade de se efetuarem cálculos no comércio, medir terras e predizer eventos astronômicos. Estas três necessidades podem ser grosso modo relacionadas com as grandes subdivisões da matemática: o estudo das estruturas, o estudo dos espaços e o estudo das alterações.

É altamente provável que o ser humano desenvolveu competências matemáticas antes do surgimento da escrita. O primeiro objeto conhecido que atesta a habilidade de cálculo é dos Ishango, e data de 20.000 anos atrás. O desenvolvimento da matemática permeou as primeiras civilizações, e tornou possível o desenvolvimento de aplicações concretas: o comércio, o manejo de plantações, a medição de terra, a previsão de eventos astronômicos, e por vezes, a realização de rituais religiosos.

O estudo de estruturas matemáticas começa com a aritmética dos números naturais e segue com a extração de raízes quadradas e cúbicas, a resolução de algumas equações polinôminais de grau 2, a trigonometria e o cálculo das frações, entre outros tópicos.

Tais desenvolvimentos são creditados às civilizações acadiana, babilônica, egípcia, chinesa, ou ainda, àquelas do vale dos Indus. Na civilização grega, a matemática, influencida pelos trabalhos anteriores, e pelas especulações filosóficas, se tornaram mais abstratas. Dois ramos se distinguiram, a aritmética e a geometria. Além disto, formalizou-se as noções de demonstração e a definição axiomática dos objetos de estudo. Os Elementos de Euclides relatam uma parte dos conhecimentos geométricos na Grécia do século III a.d.

A civilização islâmica permitiu que a herança grega fosse conservada, e propiciou seu confronto com as descobertas chinesas e hindus, notadamente na questão da representação numérica [ref. necessária]. Os trabalhos matemáticos se desenvolveram consideravelmente tanto na trigonometria (introdução das funções trigonométricas), quanto na aritimética. Em seguida, desenvolveu-se a análise combinatória, a análise numérica e a álgebra de polinômios.

Durante a Renascença, uma parte dos textos árabes foram estudados e traduzidos para o latim. A pesquisa matemática, se concentrou então, na Europa. O cálculo algébrico se desenvolveu rapidamente com os trabalhos dos franceses Viète e René Descartes. Em seguida, Newton e Leibiniz descobriram a noção de cálculo infinitesimal e introduziram a noção de fluxor (vocábulo abandonado posteriormente). Ao longo dos séculos XVIII e XIX, a matemática se desenvolveu fortemente com a introdução de novas estruturas abstratas, notadamente os grupos (graças aos trabalhos de Évariste Galois) sobre a resolubilidade de equações polinomiais, e os anéis definidos nos trabalhos de Richard Dedekind.

As regras que governam as operações aritméticas são as da Álgebra elementar e as propriedades mais profundas dos números inteiros são estudadas na teoria dos números. A investigação de métodos para resolver equações leva ao campo da Álgebra abstrata, que, entre outras coisas, estuda anéis e corpos – estruturas que generalizam as propriedades possuídas pelos números. O conceito de vetor, importante para a física, é generalizado no espaço vetorial e estudado na Álgebra linear, pertencendo aos dois ramos da estrutura e do espaço.

O ensino da geometria.

O ensino da geometria.

O estudo do espaço se originou com a Geometria, primeiro com a Geometria euclidiana e a Trigonometria; mais tarde foram generalizadas nas geometrias não-Euclidianas, as quais cumprem importante papel na formulação da teoria da relatividade. A teoria de Galois permitiu resolverem-se várias questões sobre construções geométricas com régua e compasso. A Geometria diferencial e a Geometria algébrica generalizam a geometria em diferentes direções: a Geometria diferencial enfatiza o conceito de sistemas de coordenadas, equilíbrio e direção, enquanto na Geometria algébrica os objetos geométricos são descritos como conjuntos de solução de equações polinomiais. A teoria dos grupos investiga o conceito de simetria de forma abstrata e fornece uma ligação entre os estudos do espaço e da estrutura. A topologia conecta o estudo do espaço e o estudo das transformações, focando-se no conceito de continuidade.

Entender e descrever as alterações em quantidades mensuráveis é o tema comum das ciências naturais e o cálculo foi desenvolvido como a ferramenta mais útil para fazer isto. A descrição da variação de valor de uma grandeza é obtida por meio do conceito de função. O campo das equações diferenciais fornece métodos para resolver problemas que envolvem relações entre uma grandeza e suas variações. Os números reais são usados para representar as quantidades contínuas e o estudo detalhado das suas propriedades e das propriedades de suas funções consiste na análise real, a qual foi generalizada para análise complexa, abrangendo os números complexos. A análise funcional trata de funções definidas em espaços de dimensões tipicamente infinitas, constituindo a base para a formulação da mecânica quântica, entre muitas outras coisas.

Para esclarecer e investigar os fundamentos da matemática, foram desenvolvidos os campos da teoria dos conjuntos, lógica matemática e teoria dos modelos.

Quando os computadores foram concebidos, várias questões teóricas levaram à elaboração das teorias da computabilidade, complexidade computacional, informação e informação algorítmica, as quais são investigadas na ciência da computação.

O conjunto de Mandelbrot.

Uma teoria importante desenvolvida pelo ganhador do Prêmio Nobel, John Nash, é a Teoria dos jogos, que possui atualmente aplicações nos mais diversos campos, como no estudo de disputas comerciais.

Os computadores também contribuíram para o desenvolvimento da teoria do caos, que trata com o fato que muitos sistemas dinâmicos obedecem a leis que, na prática, tornam seu comportamento imprevisível. A teoria do caos tem relações estreitas com a geometria dos fractais, como o conjunto de Mandelbrot.

Um importante campo na matemática aplicada é a Estatística, que permite a descrição, análise e previsão de fenômenos aleatórios e é usada em todas as ciências. A análise numérica investiga os métodos para resolver numericamente e de forma eficiente vários problemas usando computadores e levando em conta os erros de arredondamento. A matemática discreta é o nome comum para estes campos da matemática úteis na ciência computacional.